Granite River Labs Pulse-Amplitude Modulation 4 (PAM4) Receiver Compliance Test Automation Solution User Guide and Method of Implementation (MOI) for Chip-to-Module 400Gb/s 8-Lane Attachment Unit Interface (CDAUI-8) for Hosts Using

GRL-PAM4-RX Automation Test Software, Anritsu 28Gb/s or 32Gb/s (MP1800A) BERT, PAM4 6dB (MZ1854A) Combiner,

and

Tektronix MSO70000 (DPOJET) Series Oscilloscopes

All product names are trademarks, registered trademarks, or service marks of their respective owners.

The GRL disclaims all warranties and liability for the use of this document and the information contained herein and assumes no responsibility for any errors that may appear in this document, nor does the GRL make a commitment to update the information contained herein.

Contact the GRL office to obtain the latest revision of this document.

Questions regarding this document in the GRL may be forwarded to:

Granite River Labs 3500 Thomas Road, Suite A, Santa Clara, CA 95054 Phone: 408-627-7608 Fax: 408-912-1810 E-mail: info@graniteriverlabs.com http://www.graniteriverlabs.com

DISCLAIMER

This document is provided "as is" with no warranties whatsoever, including any warranty of merchantability, no infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification, or sample. The GRL disclaims all liability for infringement of proprietary rights, relating to use of information in this specification. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

All product names are trademarks, registered trademarks, or service marks of their respective owners.

Copyright © 2017 Granite River Labs

TABLE OF CONTENTS

1	INTRODUCTION	8
2	RESOURCE REQUIREMENTS	9
	2.1 Equipment Requirements	9
3	SETTING UP GRL-PAM4-RX AUTOMATION SOFTWARE	11
	3.1 DOWNLOAD SOFTWARE	11
	3.2 LAUNCH AND SET UP SOFTWARE	11
	 3.3 PRE-CONFIGURE SOFTWARE BEFORE TESTING	14 14 14
4	CALIBRATING USING GRL-PAM4-RX	15
	 4.1 SET UP PAM4 Rx CALIBRATION WITH AUTOMATION 4.1.1 Connect Equipment for Signal Calibration Without Mated HCB/MCB Pair 4.1.2 Connect Equipment for Signal Calibration with Mated HCB/MCB Pair 	16 r16 17
5	TESTING USING GRL-PAM4-RX	18
	5.1 SET UP PAM4 Rx TEST WITH AUTOMATION FOR HOST DUT	18
6 P.	CONFIGURING AND SELECTING CALIBRATION AND TESTS USING AM4-RX	GRL- 19
	6.1 Set Up Calibration/Test Requirements	19
	 6.2 SELECT CALIBRATION AND TESTS 6.2.1 Select Initial Stressed Signal Calibration	19 19 20 20
	6.3 CONFIGURE CALIBRATION AND TEST PARAMETERS	20
	6.4 CONFIGURE CALIBRATION TARGET VALUES	21
7	RUNNING AUTOMATION CALIBRATION AND TESTS USING GRL-P. 22	AM4-RX
8	INTERPRETING GRL-PAM4-RX TEST REPORT	23
	 8.1 UNDERSTAND TEST REPORT INFORMATION	23 23 24 24
	8.2 Delete Test Results	25
9	SAVING AND LOADING GRL-PAM4-RX TEST SESSIONS	26

27

10 APPENDIX A: MANUAL CTS PROCEDURE FOR PAM4 RECEIVER MEASUREMENTS

10.1.1	Initial Equipment Setup	27
10.1.2	PG1 and PG2 Skew Adjustment	29
10.1.3	Stress Calibration Before Attaching HCB/MCB Mated Pair	35
10.1.4	VEC, Eye Height and Eye Width Calibration After Attaching HCB/N 40	MCB Mated Pair
10.1.5	Equipment Setup for DUT Testing	49

List of Figures

Figure 1. Select and Launch GRL Framework	11
Figure 2. Start PAM4 Rx Test Application	12
Figure 3. See License Details	12
Figure 4. Check License for Installed Applications	12
Figure 5. Connect Instruments with GRL Software	13
Figure 6. Session Info Page	14
Figure 7. Data Rate Setting	14
Figure 8. Select SJ Frequencies	14
Figure 9. Conceptual PAM4 Rx Calibration Setup Diagram (Without Mated HCB/MCB Pair)	16
Figure 10. Conceptual PAM4 Rx Calibration Setup Diagram (With Mated HCB/MCB Pair)	17
Figure 11. Conceptual PAM4 Rx Host DUT Test Setup Diagram	18
Figure 12. Set Up Eye Parameters	19
Figure 13. Select Tests Page	19
Figure 14. Select Initial Stress Calibration	19
Figure 15. Select Final Stress Calibration	20
Figure 16. Select Host DUT Rx Test	20
Figure 17. Test Parameters Configuration Page	20
Figure 18. Calibration Target Overwrite Page	21
Figure 19. Run Tests Page	22
Figure 20. Connection Diagram Pop-Up Window Example	22
Figure 21. Test Report Page	23
Figure 22. Test Session Information Example	23
Figure 23. Test Summary Table Example	24
Figure 24. Test Results Example	25
Figure 25. Delete Test Results	25
Figure 26. Save/Load/Create Test Sessions	26
Figure 27. Physical Setup Before Connecting HCB/MCB	27
Figure 28. Enable BERT Pattern Generator in Combination Mode	28
Figure 29. Enable All Stresses	29
Figure 30. Set Data Rate and Data1 and 2 Amplitudes	30
Figure 31. Set Trigger Source	31
Figure 32. Set Math	31
Figure 33. Set Sampling Mode	32
Figure 34. Set Variable Display Persistence	32
Figure 35. Set Horizontal Acquisition	33
Figure 36. Enable Cursors	33
Figure 37. Adjust Cursor	34

Figure 38. Adjust DATA2 Delay	
Figure 39. Verify Eye Diagram	35
Figure 40. Host Stressed Input Connection Setup	35
Figure 41. Change Pattern on BERT	
Figure 42. Select Jitter Measurements on Scope	
Figure 43. Select Data Signal Type on Scope	
Figure 44. Set Target BER on Scope	
Figure 45. Set Clock Recovery Method on Scope	
Figure 46. Select Eye Diagram Plot on Scope	
Figure 47. Set Initial RJ on BERT	
Figure 48. Set Up BUJ on BERT	
Figure 49. Set Up SJ on BERT	40
Figure 50. VEC, Eye Height and Eye Width Connection Setup	40
Figure 51. Physical Setup with HCB/MCB Attached	41
Figure 52. Set Math	42
Figure 53. Set Bandwidth	42
Figure 54. Set Sample Rate	43
Figure 55. Capture Eye Measurements	44
Figure 56. Final Adjustments for RJ and PG Output Amplitude	45
Figure 57. Set Up SJ on BERT	46
Figure 58. Adjust RJ on BERT	47
Figure 59. Adjust DATA Output Amplitude on BERT	47
Figure 60. Measure EH6, EW6, and VEC	48
Figure 61. Physical Test Setup for Host DUT	49

List of Tables

Table 1. Equipment Requirements – Systems	9
Table 2. Equipment Requirements – Accessories	9
Table 3. Software Requirements	.10
Table 4. Test Parameters Description	.20

Revision Record

Version	Revision Date	Description of Changes	Author(s)
1.0	11/2017	GRL-PAM4-RX User Guide/MOI Creation	Ong Gaik Pheng (GRL) gpong@graniteriverlabs.com

1 Introduction

This User Guide/Method of Implementation (MOI) provides information using the GRL-PAM4-RX test solution to deliver automation control for electrical device receiver (Rx) compliance.

The main body of this documentation describes how to set up the GRL-PAM4-RX software to perform stressed signal calibration and DUT compliance testing using existing PAM4 Host Compliance Boards (HCB's) and Module Compliance Boards (MCB's).

The test automation is carried out based on PAM4-approved MOI's with a high-performance Tektronix oscilloscope, Anritsu BERT, and PAM4 combiner as the main equipment. As technical reference, a manual test methodology that conforms to the PAM4 Compliance Test Specification (CTS) is also provided in the Appendix of this documentation.

The GRL-PAM4-RX solution consists of the GRL PAM4 receiver automation software which is run from the computer or oscilloscope to enable automation control to test the device under test (DUT) for Rx electrical compliance. The GRL automation control enabled PC or scope automates calibration and test sequencing and processing for signal tolerances of the DUT at selected parameters. The Rx path is tested with worst case eye to ensure a Bit Error Ratio (BER) of less than 1E-06 can be achieved. When combined with a satisfactory level of interoperability testing, these tests provide a reasonable level of confidence that the DUT's will function properly in most PAM4 environments.

The documentation covers the following major components for PAM4 Rx testing.

- 1. GRL-PAM4-RX automation software configuration and test setup.
- 2. Manual CTS calibration and test procedures for Chip-to-module 400Gb/s eight-lane Attachment Unit Interface (CDAUI-8) for host receivers.

The MOI reduces the CTS test description to practice using the specified test equipment and procedures in an effort to standardize testing across ATCs and equipment manufacturers who perform their own certification measurements.

2 **Resource Requirements**

Note: Equipment requirements may vary according to the lab setup and DUT. Below are the recommended lists of equipment for the typical test setup.

2.1 Equipment Requirements

 TABLE 1. EQUIPMENT REQUIREMENTS – SYSTEMS

System	Qty.	Description/Key Spec Requirement
Tektronix High Performance	1	MS070000DX Series and above (recommended)
Oscilloscope		≥ 33GHz bandwidth
		DPOJET Software
		PAM4 Analysis Software
Anritsu BERT	1	
- Signal Quality Analyzer		- MP1800A (28Gbit/s or 32Gbit/s Pulse
		Pattern Generator Output)
- Jitter Modulation Source		- MU181500B
Anritsu PAM4 Combiner	1	MZ1854A (6dB)
Wilder Technologies PAM4	1	QSFP+ 100Gb
Module Compliance Board (MCB)		(QSFP+ TPA100G-MCB-R Model)
Wilder Technologies PAM4 Host	1	QSFP+ 100Gb
Compliance Board (HCB)		(QSFP+ TPA100G-HCB-P Model)
Computer (laptop or desktop)	1	For automation control of the DUT

 TABLE 2. EQUIPMENT REQUIREMENTS – ACCESSORIES

Accessory	Qty.	Description/Key Spec Requirement
Phase-matched SMA Cable	2	For BERT Data signals ≥ 33GHz bandwidth
SMA Cable	1	For BERT Sub-rate clock output
Attenuator (8dB)	2	For BERT Data signals to achieve eye height target of < 60mV ≥ 33GHz bandwidth

Pulse-Amplitude Modulation 4 (PAM4)

 TABLE 3. SOFTWARE REQUIREMENTS

Software	Description/Source
GRL-PAM4-RX	Granite River Labs PAM4 Automated Receiver Compliance Test Solution – <u>www.graniteriverlabs.com</u>
BERT Software	Anritsu Mainframe MX180000A SQA Control Software (Version 8.00.04 or above)

3 Setting Up GRL-PAM4-RX Automation Software

This section provides the procedures to start up and pre-configure the GRL-PAM4-RX automation software before running tests. It also helps users familiarize themselves with the basic operation of the software.

Note: The GRL software installer will automatically create shortcuts in the Desktop and Start Menu when installing the software.

To start using the software, follow the procedures in the following sections.

3.1 Download Software

Download and install the software as follows:

- 1. Download the software ZIP file package from the Granite River Labs support site.
- 2. The zip file contains:
 - a) **PAM4RxPatternFilesInstallation00xxxxxxSetup.exe** Run this on the Anritsu BERT to install the pattern setup files.
 - b) **PAM4RxTestApplication00xxxxxxSetup.exe** Run this on the PC or the Tektronix Oscilloscope to install the application.
 - c) **PAM4RxTestScopeSetupFilesInstallation00xxxxxxx.exe** Run this on the Tektronix Oscilloscope to install the scope setup files.

3.2 Launch and Set Up Software

1. Once the software is installed, open the GRL folder from the Windows Start menu and select the GRL Framework. The GRL Framework will launch.

FIGURE 1. SELECT AND LAUNCH GRL FRAMEWORK

2. From the Application→Rx Test Solution drop-down menu, select "PAM4 Rx Test" to start the PAM4 Rx Test Application. If the selection is grayed out, it means that your license has expired.

GRL - Automated Test Solution	
Application Options License	Windows Help
Framework Test Solution	
Rx Test Solution	DisplayPort Sink Test
	Tek PCIe 4.0 Base Rx Test
	PCIe 3.0 Base Rx Test
	Anritsu PAM4 Rx Test

FIGURE 2. START PAM4 RX TEST APPLICATION

3. To enable license, go to License \rightarrow License Details.

Application	Options	Setup	License	Windows	Help
Equipmen	t Setup		Lice	nse Details	

FIGURE 3. SEE LICENSE DETAILS

a) Check the license status for the installed application.

Framework License Details	
stalled Products:	
Anitsu TST3 Return Loss Test Application - Permanent Anitsu Type-C Cable Test Application - Permanent DisplayPort Sink Test 1.4 - Demo(Expires in 58 days) Thunderbot 3 Tx Test - Demo(Expires in 58 days) PCIE Tx Test - Permanent	,
-CIE_Switch_Matrix - Demo(Expires in 100 days) Anritsu PAM4 Rx Test - Demo(Expires in 12 days)	
lost ID (For enquiries or license request please send this information):	
IqEx06bSTAGvNJXI9MZ1IPUpODrJkTEKNwze1r2sC7xLY3KAe+p T4cslo1VlorbZe6E+E9yK17/Nhmg++AAEA7lcNA1w5GHRNwkB43 qZ6sK1vlO309rJ7rVtTJv1z43Ri+nt7bGGXwJJq0U9Au1diQea63dNc UZF2P8uTYRoFvv5v6khUbd0z2NH1dfdkCwWcxCaSH8iHfS3/KH	Copy to Clipboard
or license enquiries send the Host ID to <u>support@GraniteRiverLabs.c</u>	om
Activation Key Received:	
Activation License File Received: Rowse	Activate

FIGURE 4. CHECK LICENSE FOR INSTALLED APPLICATIONS

- b) Activate a License:
- If you have an Activation Key, enter it in the field provided and select "Activate".
- If you do not have an Activation Key, select "Close" to use a demo version of the software over a free 10-day trial period.

Pulse-Amplitude Modulation 4 (PAM4)

Note: Once the 10-day trial period ends, you will need to request an Activation Key to continue using the software on the same computer or oscilloscope. The demo software is also limited in its capability, in that it will only calibrate the maximum frequency for each data rate. Thus, the demo version cannot be used to fully calibrate and test a device. For Demo and Beta Customer License Keys, please request an Activation Key by contacting <u>support@graniteriverlabs.com</u>.

- 4. Select the Equipment Setup icon 🔟 on the PAM4 Rx Test Application menu.
- 5. Connect the Anritsu BERT via LAN to the GRL automation control enabled Scope or PC.
- 6. On the Tektronix Oscilloscope or the PC, obtain the network addresses for all the connected instruments from the device settings. (*Note: The scope IP address can be obtained, if not known, by typing CMD* \rightarrow *IPCONFIG on the scope and observe the IP address listed.*)

For example, the addresses may look like the following when the BERT is connected to the scope:

- 192.168.0.9 (Scope)
- 192.168.0.47:5000 (BERT)

Note these addresses as they will be used to connect the instruments to the GRL automation software.

7. On the Equipment Setup page of the GRL PAM4 Rx Test Application, type in the address of each connected instrument into the "Address" field.

Then select the "lightning" button (🖌) for each connected instrument.

The "lightning" button should turn green (\checkmark) once the application has successfully established connection with each instrument.

Equipment Setup $\boxed{\textcircled{1}} \textcircled{1} \leftrightarrow \textcircled{2} \textcircled{1} \rightarrow \swarrow \rightarrow \swarrow \rightarrow \textcircled{2}$								
	Name	ID	Address	Туре	Vendor	Lib		
	Scope	Scope	GPIB8::1::INSTR	Oscilloscope	Tektronix ~	TekDPOJETSc ~	Ø	
	BERT	BERT	192.168.0.47:5000	BERT	Anritsu ~	AnritsuBert v	I	

FIGURE 5. CONNECT INSTRUMENTS WITH GRL SOFTWARE

3.3 Pre-Configure Software before Testing

Once all equipment is successfully connected from the previous section, proceed to set up the preliminary settings before going to the advanced test setup.

3.3.1 Enter Test Session Information

Select Offrom the menu to access the **Session Info** page. Enter the information as required for the test session that is currently being run. The information provided will be included in the test report generated by the software once tests are completed.

- The fields under **DUT Info** and **Test Info** are defined by the user.
- The **Software Info** field is automatically populated by the software.

Sess	on Info 📝 🚺 💠 🕸 💷 🛠 👁 → 🕨 → 📩	?
Sess	DUT Info Test Info Software Info DUT Manufacturer: GRL DUT Model Number: PAM4 Rx Device 1 DUT Serial Number: 00000000001	<u> </u>

FIGURE 6. SESSION INFO PAGE

3.3.2 Set Test Conditions

Select **from the menu to access the Conditions** page to set the conditions for testing. The software will run tests for the PAM4 data rate and SJ test frequencies that are selected.

a) **Data Rate** tab: PAM4 uses the standard 26.5625 GBd/s data rate which is pre-selected by default.

Con	ditions		t 0 💽 🕲 🗶 🔍 → ► + 🛋 📀 🕗	
	Data Rate	SJ Frequency		0
		☑ 26.5625 GBaud/s		

FIGURE 7. DATA RATE SETTING

b) SJ Frequency: Select the desired SJ frequencies for testing or calibration.

8

FIGURE 8. SELECT SJ FREQUENCIES

GRL-PAM4-RX User Guide/MOI © Granite River Labs 2017

4 Calibrating Using GRL-PAM4-RX

The GRL-PAM4-RX test solution supports automated Rx calibration for stressed signals. The GRL automation software typically runs a calibration sequence from the PC/oscilloscope for stressed input followed by VEC, Eye Height, and Eye Width. The typical calibration setup requires pattern generators on the BERT to provide the necessary stress components as well as an oscilloscope, PAM4 combiner, and existing Host Compliance Board (HCB)/Module Compliance Board (MCB).

Prior to running stress calibration, the software will first carry out skew alignments between two pattern generators to generate a PAM4 compliant test pattern. When completed, stress calibration will proceed without attaching a HCB/MCB mated pair. The stressed signal is applied at TP4a (output of the pattern generator) and calibrated for initial values of Random Jitter (RJ), Bounded Uncorrelated Jitter (BUJ), Total Jitter (TJ), and Sinusoidal Jitter (SJ).

After completing stress calibration, the stressed signal will additionally be calibrated at TP4 for final Eye Width, Eye Height, and VEC after attaching the HCB/MCB mated pair in the setup. This procedure will require obtaining an optimal CTLE which generates the largest Eye Height and Eye Width. Proper adjustments will then be carried out using this optimal CTLE to achieve the final Eye Height, Eye Width, and VEC.

Note: For more details on these calibration, refer to the manual CTS methodology under Appendix in Section 10 of this documentation.

4.1 Set Up PAM4 Rx Calibration with Automation

Once pre-configuration has been completed from Section 3.3, continue with the calibration setup. The following procedures show how to set up the physical connections to perform automated Rx calibration for stressed signals.

4.1.1 Connect Equipment for Signal Calibration Without Mated HCB/MCB Pair

The connection diagram below shows the recommended equipment setup to perform skew, RJ, TJ, and SJ calibration using a GRL automation control enabled scope, pattern generators, and PAM4 combiner. (*Note that this calibration is performed before including any mated HCB/MCB pair in the setup.*)

FIGURE 9. CONCEPTUAL PAM4 Rx CALIBRATION SETUP DIAGRAM (WITHOUT MATED HCB/MCB PAIR)

- 1. Connect the Pattern Generator 1 (PG1) and Pattern Generator 2 (PG2) Outputs from the BERT to the PAM4 Combiner.
- 2. Connect the Data+ Output from the PAM4 Combiner to Channel 1 of the Scope.
- 3. Connect the Data- Output from the PAM4 Combiner to Channel 3 of the Scope.
- 4. Connect the Sub-rate Clock+ Output from the BERT to Channel 2 of the Scope.

4.1.2 Connect Equipment for Signal Calibration with Mated HCB/MCB Pair

The connection diagram below shows the recommended equipment setup to perform VEC, Eye Width, and Eye Height calibration using a GRL automation control enabled scope, pattern generators, PAM4 combiner, and mated 100G HCB/MCB pair.

FIGURE 10. CONCEPTUAL PAM4 RX CALIBRATION SETUP DIAGRAM (WITH MATED HCB/MCB PAIR)

- 1. Connect the Pattern Generator 1 (PG1) and Pattern Generator 2 (PG2) Outputs from the BERT to the PAM4 Combiner.
- 2. Attach the 100G Host Compliance Board (HCB) to the 100G Module Compliance Board (MCB).
- 3. Connect the Data+ Output from the PAM4 Combiner to a 8dB attenuator to TX1+ on the HCB side of the mated 100G HCB/MCB pair.
- 4. Connect the Data- Output from the PAM4 Combiner to a 8dB attenuator to TX1- on the HCB side of the mated 100G HCB/MCB pair.
- 5. Connect the TX1+ Output on the MCB side of the mated 100G HCB/MCB pair to Channel 1 of the Scope.
- 6. Connect the TX1- Output on the MCB side of the mated 100G HCB/MCB pair to Channel 3 of the Scope.

5 Testing Using GRL-PAM4-RX

The GRL-PAM4-RX test solution supports automated Rx compliance testing for PAM4 Host DUT's. After completing calibration, the GRL automation software will perform testing for stressed input compliance of the Host DUT.

To create the typical test environment, the oscilloscope is first disconnected from the mated 100G HCB/MCB pair in the previous calibration setup. The MCB is then removed from the mated HCB/MCB pair to allow the DUT to be connected to the HCB. When setup is ready, testing will proceed and a detailed test report will be generated once test is completed.

5.1 Set Up PAM4 Rx Test with Automation for Host DUT

Once calibration has been completed from Section 4, continue with the following setup to perform Rx stressed input compliance testing for the Host DUT.

FIGURE 11. CONCEPTUAL PAM4 RX HOST DUT TEST SETUP DIAGRAM

- 1. From the previous calibration setup in Section 4.1.2, disconnect the oscilloscope from the mated 100G HCB/MCB pair.
- 2. Unplug the MCB from the mated 100G HCB/MCB pair.
- 3. Connect the HCB to the Host DUT.

6 Configuring and Selecting Calibration and Tests Using GRL-PAM4-RX

6.1 Set Up Calibration/Test Requirements

After setting up the physical equipment, select **1** from the GRL PAM4 Rx Test Application menu to access the Setup Configuration page.

Enter the target Eye Width and Eye Height values to be applied during final stage calibration.

Setu	p Configuration	↓ ① + ◎ □ ★ ◎ → ► → □	2	
	Eye Calibration			3
	Eye Width Target:	0.2 mUI		٦
	Eye Height Target:	30 mV		

FIGURE 12. SET UP EYE PARAMETERS

6.2 Select Calibration and Tests

Select **[10]** from the menu to access the **Select Tests** page which displays all available Rx compliance calibration and tests. User must make sure to run and complete calibration first before proceeding with DUT testing. If calibration is not completed, running the DUT test will show an error message.

Sele	Tests	()	
	All Tests Stressed Signal Calibration Signal Calibration before Mated HCB/MCB Pair Signal Calibration Added HCB/INCB Pair Solution Solution Solution Sinusoidal Jitter (RJ) Calibration Sinusoidal Jitter (SJ) Calibration Signal Calibration after Mated HCB/MCB Pair Solution Solution		8

FIGURE 13. SELECT TESTS PAGE

6.2.1 Select Initial Stressed Signal Calibration

Under "Signal Calibration before Mated HCB/MCB Pair", select to perform skew adjustments between dual pattern generators and stress calibration before applying the HCB/MCB mated pair. The stressed signal will be calibrated for initial values of Random Jitter (RJ), Total Jitter (TJ), and Sinusoidal Jitter (SJ).

FIGURE 14. SELECT INITIAL STRESS CALIBRATION

GRL-PAM4-RX User Guide/MOI © Granite River Labs 2017

6.2.2 Select Final Stressed Signal Calibration

Under "Signal Calibration after Mated HCB/MCB Pair", select to perform calibration for optimal CTLE and final Eye Height, Eye Width, and VEC using the optimal calibrated CTLE value after applying the HCB/MCB mated pair.

Sele	ect Tests 🧳 🕐 🔶 🐨 🖉 😨 🛠 👁 🔸 📄 🕐	
	Image: Calibration Image: Calibration before Mated HCB/MCB Pair Image: Calibration after Mated HCB/MCB Pair Image: Cal	0

FIGURE 15. SELECT FINAL STRESS CALIBRATION

6.2.3 Select DUT Rx Compliance Test

After completing calibration, under "Receiver Tests", select to perform the Rx stressed input compliance test for the Host DUT.

Select Tests	↓ 🗘 💠 🕸 🛄 🛠 👁 → 🕨 → 💼	?
		3

FIGURE 16. SELECT HOST DUT RX TEST

6.3 Configure Calibration and Test Parameters

After selecting the desired calibration/test, select \bigotimes from the menu to access the Configurations page. Set the necessary parameters for calibration and testing as described below.

Config	gurations	2
	All Tests Signal Source: CH2+CH4 Trigger Source: CH3 Trigger Source: CH3 Trigger Source: CH3 Trigger Source: CH3 CH3 CH3 CH3 CH4 CH4	3

FIGURE 17. TEST PARAMETERS CONFIGURATION PAGE

TABLE 4. TEST PARAMETERS DESCRIPTION

Parameter	Description
Signal Source	Select the scope channels that are connected to the Data outputs of the PAM4 combiner.
Trigger Source	Select the scope channel that is connected to the Sub-rate Clock+ Output of the BERT.

BT4 Filter Bandwidth (GHz)	Set the frequency for the electrical bandwidth of the fourth-order Bessel-Thomson (BT4) filter used with the reference receiver. For PAM4 signals, the bandwidth is generally set to a frequency of 50% of the data rate.
PLL Bandwidth (MHz)	Set the frequency for the Phase Locked Loop (PLL) bandwidth of the reference receiver. The recovered clock will make use of the configured PLL bandwidth to reduce frequency effects in the stressed signal calibration.
CTLE (dB)	Select the CTLE of the reference receiver to obtain the optimal CTLE which generates the largest Eye Height and Eye Width.

6.4 Configure Calibration Target Values

For debugging purposes ONLY, the default calibration target values can be changed for the RJ or TJ calibration. To do this, select in from the menu to access the Calibration page.

By default, the calibration target values are those defined in the specification. To change the values, un-select the Use Default Value checkbox. In case the default values are required again, just select the checkbox to allow all existing values to be reset to default.

Note: The PID Control setting is used to adjust the step width for steps calculation if the target measurement cannot be met with the current step. To adjust, use a lower PID Control value to reduce the subsequent step or increase the control value to make the subsequent step bigger.

Calib	ration		🔹 🗊 🕯	+ ◎ ×	2
				☑ Use Default Value	8
	Random Jitter (R.	J) Calibration	Total Jitter (TJ) Calibration		
	Initial Cal	0.96			
	Target	0.0157	UI		
	Min Limit:	0.0150	UI		
	Max Limit:	0.0167	UI		
	PID Control	10			

FIGURE 18. CALIBRATION TARGET OVERWRITE PAGE

7 Running Automation Calibration and Tests Using GRL-PAM4-RX

Once selected calibration and tests are ready to be run, select **m** from the GRL PAM4 Rx Test Application menu to access the Run Tests page.

Under "Run Option", select the option to either:

- **Skip Test if Result Exists** If results from previous calibration/tests exist, the software will *skip* those calibration/tests, or
- **Replace if Result Exists** If results from previous calibration/tests exist, the software will *replace* those calibration/tests with new results.

Run	Tests	\$ 10 + 10 10 ★ 10 → 💽 → 📩	
	Run Option Skip Test if Result Exists Replace if Result Exists 	Run Tests	3

FIGURE 19. RUN TESTS PAGE

Select the **Run Tests** button to automatically start running the selected calibration and tests. At the start of a specific calibration/test, the corresponding connection diagram will initially appear to allow the user to verify with the recommended physical setup before continuing with the next step. Below shows an example of a connection diagram pop-up window.

FIGURE 20. CONNECTION DIAGRAM POP-UP WINDOW EXAMPLE

8 Interpreting GRL-PAM4-RX Test Report

When all calibration and test runs have completed from the previous section, the GRL-PAM4-RX software will automatically display the results on the **Report** page.

Select from the menu to access the Report page for a quick view of all results.

If some of the results are not desired, they can be individually deleted by selecting the **Delete** button.

For detailed test report, select the **Generate report** button to generate a PDF report. To have the calibration data plotted in the report, select the **Plot Calibration Data** checkbox.

Result	l						
No	Test Name	Result	Limits	Value	Data Rate	SJ Fr 🔺	Generate report
1	PG1 / PG2 Skew Calibration	PASS	True/False	True	N/A	N/A	Delete
2	Random Jitter (RJ) Calibration	PASS	True/False	True	N/A	N/A ≡	Delete
3	Total Jitter (TJ) Calibration	PASS	True/False	True	N/A	N/A	
4	Sinusoidal Jitter (SJ) Calibration	PASS	True/False	True	26.5625	0.041	O Delete All
5	Sinusoidal Jitter (SJ) Calibration	PASS	True/False	True	26.5625	1.333	
6	Sinusoidal Jitter (SJ) Calibration	PASS	True/False	True	26.5625	4MHz	
7	Sinusoidal Jitter (SJ) Calibration	PASS	True/False	True	26.5625	12MF	
8	Sinusoidal Jitter (SJ) Calibration	PASS	True/False	True	26.5625	40MF -	Plot Calibration Data

FIGURE 21. TEST REPORT PAGE

8.1 Understand Test Report Information

This section gives a general overview of the test report to help users familiarize themselves with the format. Select the **Generate report** button to generate the test report.

8.1.1 Test Session Information

This portion displays the information previously entered on the **Session Info** page.

		Anritsu PAM4 Rx Test Report
DUT Information		
DUT Manufacturer	:	GRL
DUT Model Number	:	PAM4 Rx Device 1
DUT Serial Number	:	0000000001
DUT Comments	:	
Test Information		
Test Lab	:	Lab 1
Test Operator	:	David
Test Date	:	Nov 10 2017
Software Version		
Software Revision	:	0.0.0.1
DPOJET Version	:	10.0.0.35
Tek Scope FW	:	10.3.5

FIGURE 22. TEST SESSION INFORMATION EXAMPLE

8.1.2 Test Summary Table

This table provides an overall view of all the calibration and tests performed along with their conditions and results.

No	TestName	Limits	Value	Results	Data Rate	SJ Frequency
1	PG1 / PG2 Skew Calibration	True/False	True	Pass		
2	Random Jitter (RJ) Calibration	True/False	True	Pass		
3	Total Jitter (TJ) Calibration	True/False	True	Pass		
4	Sinusoidal Jitter (SJ) Calibration	True/False	True	Pass	Rate_26G	SJ_0_04MHz
5	Sinusoidal Jitter (SJ) Calibration	True/False	True	Pass	Rate_26G	SJ_1_333MHz
6	Sinusoidal Jitter (SJ) Calibration	True/False	True	Pass	Rate_26G	SJ_4MHz
7	Sinusoidal Jitter (SJ) Calibration	True/False	True	Pass	Rate_26G	SJ_12MHz
8	Sinusoidal Jitter (SJ) Calibration	True/False	True	Pass	Rate_26G	SJ_40MHz
9	VEC, Eye Width, Eye Height	True/False	True	Pass	Rate_26G	SJ_1_333MHz
	<u>Calibration</u>					
10	VEC, Eye Width, Eye Height	True/False	True	Pass	Rate_26G	SJ_4MHz
	<u>Calibration</u>					
11	VEC, Eye Width, Eye Height	True/False	True	Pass	Rate_26G	SJ_12MHz
	Calibration					
12	VEC, Eye Width, Eye Height	True/False	True	Pass	Rate_26G	SJ_40MHz
	<u>Calibration</u>					
13	VEC, Eye Width, Eye Height	True/False	True	Pass	Rate_26G	SJ_0_04MHz
	Calibration					
14	Host Stressed Input Test	N/A	True	InfoOnly	Rate_26G	SJ_40MHz

FIGURE 23. TEST SUMMARY TABLE EXAMPLE

8.1.3 Test Results

This portion displays the results in detail along with supporting data points and screenshots for each calibration/test run.

12. VEC, Eye Width, Eye Height Calibration [Rate_26G,SJ_40MHz]

Pass/Fail Stats	:	Pass
Test Limits	:	True/False
Result	:	True
Final Data1 Amplitude	:	1.1866 V
Final Data2 Amplitude	:	593.2977 mV
Final RJ setting	:	34.0000 mUI
Calibrated eye width	:	196.0047 mUI
Calibrated eye height	:	29.0500 mV
Test completed time	:	08 September 2017 5:29:42 AM

PAM4 eye

FIGURE 24. TEST RESULTS EXAMPLE

8.2 Delete Test Results

To individually delete any unwanted calibration/test results, select the corresponding result row and **Delete** button.

To entirely remove all existing calibration/test results, select the **Delete All** button.

Rep	ort				t 🛈 🔶	۵ 🗶 🔳 🍥	→ ▶ → 📄			?	
		Result No	Test Name	Result	Limits	Value	Data Rate	SJ Frequency	Generate report		8
									Delete		
									Delete All		

FIGURE 25. DELETE TEST RESULTS

9 Saving and Loading GRL-PAM4-RX Test Sessions

The usage model for the GRL-PAM4-TX software is that the test results are created and maintained as a 'Live Session' in the application. This allows the user to quit the application and return later to continue where the user left off.

Save and Load Sessions are used to save a test session that the user may want to recall later. The user can 'switch' between different sessions by saving and loading them when needed.

- To *save a test session*, with all of the test parameter information, test results, and any waveforms, select the Options drop-down menu and then select "Save Session".
- To *load a test session* back into the application, including the saved test parameter settings, select Options → "Load Session".
- To *create a new test session* and return the application back to the default configuration, select Options → "New Session".

FIGURE 26. SAVE/LOAD/CREATE TEST SESSIONS

The test configuration and session results are saved in a file with the '.ses' extension, which is a compressed zip-style file, containing a variety of information.

10 Appendix A: Manual CTS Procedure for PAM4 Receiver Measurements

This section describes the methodology to perform PAM4 receiver measurements per the PAM4 PHY CTS requirements.

The following procedure gives a typical example on how to measure the stressed impairments for the PAM4 receiver.

- i) Set up equipment without the Host Compliance Board (HCB)/Module Compliance Board (MCB).
- ii) Perform skew alignments between the Pulse Pattern Generator 1 and 2 (hereafter referred to as PG1 and PG2). The electrical length of the dual pattern generators should be matched.
- iii) Calibrate stresses before applying the HCB/MCB mated pair. At TP4a, the Pattern Generator will be calibrated for initial values of Random Jitter (RJ), Bounded Uncorrelated Jitter (BUJ), Total Jitter (TJ), and Sinusoidal Jitter (SJ).
- iv) Insert the HCB/MCB mated pair.
- v) Determine the optimal CTLE. Multiple CTLEs will be applied to the Reference Receiver to determine the optimal CTLE which generates the largest Eye Height and Eye Width.
- vi) Adjust for final Eye Height, Eye Width, and VEC using the optimal CTLE.

10.1.1 Initial Equipment Setup

The following figure shows the initial setup without connecting the HCB/MCB mated pair (direct connection). (*Note that this setup is using the Anritsu BERT.*)

FIGURE 27. PHYSICAL SETUP BEFORE CONNECTING HCB/MCB

- 1. Connect the PAM4 Combiner directly to the PG1 and PG2 Differential Outputs of the BERT.
- 2. Connect the DATA+ Output of the PAM4 Combiner to CH1 of the Oscilloscope and the DATA-Output to CH3 (or CH2 and CH4 respectively, depending on the selected setup).
- 3. Connect the Sub-rate Clock+ of the BERT to the CH2 Clock Input (or the selected channel) of the Scope. (*Note: This will be used as the Trigger for PG1 and PG2 skew adjustment.*)
- 4. Enable the dual Pattern Generators of the BERT in Combination Mode. In Combination Mode, configure the PG1 and PG2 to generate the PAM4 signal:
 - a) On the BERT's Pattern Generator page, select the "Misc2" tab.
 - b) Select the "Setting..." button and select **Combination** under 'Operation'.

File View Help	Tree View	▶ ■ ● 歴 座 撃 恐 征 🛅 器 弱 お 昌 黒 ▶ ■ 尺
[1:3:1] 28G/32G PPG Data1		[1:2:1] 12 5GHz Synthesizer
Output Pattern Error Addition Pre-Code Clock Setting Clock Source Unit1:Slot6:MU181500B Bit Rate Variable Output Clock Rate Fullrate	Misc1 Misc2 26.562500 * Gbit/s Offset 0 * ppm	Setup Operating Frequency Operation Center Frequency Offset Offset Reference Clock
Combination Setting Grouping Setting Setting Data1-2	Combination Sector nation 2ch © Independ © Combinat	ent ion Synchronization
Tab Output Pat	tern Data Interface	e Combination
Data1	Data 1 Data 2	2ch PPG
		(f0 > 0.8GHz) f/1 v

FIGURE 28. ENABLE BERT PATTERN GENERATOR IN COMBINATION MODE

10.1.2 PG1 and PG2 Skew Adjustment

To generate the PAM4 pattern, ensure that the electrical path lengths of PG1 and PG2 are as closely matched as possible, by performing delay line adjustments for both pattern generators. This will be done by measuring, adjusting, and matching Eye Diagram crossing locations for PG1 and PG2. The measurements on the Scope, in Equivalent Time Mode, will be referenced to the same clock which will be injected on CH2 of the scope.

1. On the BERT's Jitter Modulation Source page, turn ON all stresses (SJ, RJ, BUJ).

- a) Set 0% for all enabled stresses.
- b) Set the Sub-rate Clock to '1/80'.

FIGURE 29. ENABLE ALL STRESSES

- 2. On the BERT's Pattern Generator page, select the "Output" tab and set the Data Rate to **26.5625Gbps**. Also set Amplitude to:
 - a) **1.2Vpp** on Data1.
 - b) **0.6Vpp** on Data2.

Note: A 2:1 ratio should be maintained to obtain appropriate PAM4 amplitudes.

Pulse-Amplitude Modulation 4 (PAM4)

	▋■●ĔをŸみェヒ▓齧りも思ヽ
[1:3:1] 28G/32G PPG Data1 💌	
Output Pattern Error Addition Pre-Code Misc1 Misc2	
Output	f
Bit Rate Setting Variable Clock ON Got/S	
Data/XData OFF V Offset Vth	
Tracking ON Level Guard OFF Setup	
Data XData Defined Interface Variable V	
Ampitude 1.200 • Vpp 1.200 • Vpp Offset AC OFF 0.000 • V 0.000 • V	
External ATT Factor 0 # dB 0 # dB - Amplitude 1.200 Vpp 1.200 Vpp	
Offset 0.000 V 0.000 V	
Cross Point 50.0 ** % 50.0 ** % Half Period Jitter 0 ** <t< td=""><td></td></t<>	
Delay P O amount Delay	
Relative 0 = mUI	
Jitter input OFF	
File View Help	
IT 3 1] 226/326 PPG Data2 ▼	L.
Output Pattern Error Addition Pre-Code Misc1 Misc2	
Bit Rate Setting Variable Clock ON	
26 562500 - Gbit/s	
L 26.562500 ≟ Gbit/s Data/XData ON ▼ Offset Vth ▼	
L 26.562500 $\stackrel{<}{\rightarrow}$ Gbit/s Data/XData ON V Offset Vth V Tracking ON	
Level Guard OFF Setup Data XData ON ▼ Offset Vth ▼ Tracking ON Level Guard OFF Setup Data XData	
26.562500 ± Gbit/s Data/XData ON ▼ Offset Vth ▼ Tracking ON Level Guard OFF Setup Data XData Variable ✓	
26.562500 m/s Data/XData ON ▼ Offset Vth ▼ Tracking ON Level Guard OFF Setup Data XData Defined Interface Variable Amplitude 0.600 m/s Vpp 0.600 m/s V grinable Vortset AC OFF	
26.562500 m² Gbit/s Data/XData ON ▼ Offset Vth ▼ Tracking ON Level Guard OFF Setup XData Defined Interface Variable Amplitude 0.600 m² Offset AC OFF 0.000 m² V 0.000 m² V 0.000 m² V External ATT Factor 0 m²	
28.562500 ± Gbit/s Data/XData ON ▼ Offset Vth ▼ Tracking ON Level Guard OFF Setup Data Defined Interface Variable ▼ Amplitude 0.600 ± Vpp Offset AC OFF 0.000 ± Vpp Coffset AC OFF 0.000 ± Vpp 0.600 vpp 0.600 Vpp 0.600 Vpp	
26.562500 # Gbit/s Data/XData ON Offset Tracking ON Level Guard OFF Setup Data Datin XData Defined Interface Variable Amplitude 0.600 Offset AC OFF Out 0.000 External ATT Factor 0 Offset 0.000 Offset 0.000 Offset 0.000 Offset 0.000 Offset 0.000 Offset 0.000	
26.562500 ▲ Gbit/s Data/XData ON ▼ Offset Vth ▼ Tracking ON Level Guard OFF Setup Defined Interface Variable ▼ Amplitude Offset Vpp Offset Amplitude Offset Offset Offset Offset Offset Variable Variable Variable Variable Offset 0.000 ★ 0.000 ★ 0.600 ∨pp 0.600 ∨pp 0.600 ∨pp 0.600 ∨ 0.000 ∨ 0.000 ∨ 0.000 ∨ 0.000 ∨ 0.000 ∨ 0.000 ∨ 0.000 ∨ 0.000 ∨ 0.000 ∨ 0.000 ∨ 0.000 ∨ 0.000 ∨ 0.000 ∨ 0.000 ↔ 10 ★	
26.562500	
26.562500	
26.562500 # Gbht/s Data/XData ON Offset Tracking ON Level Guard OFF Setup Data Defined Interface Variable Amplitude 0.600 Offset AC OFF Offset 0.000 Offset 0.000 Potfset 0.000 Offset 0.000 Delay 0 Offset 0 Delay 0 Offset 0 <td></td>	

FIGURE 30. SET DATA RATE AND DATA1 AND 2 AMPLITUDES

3. Turn OFF Data1 by setting "Data/XData" to OFF.

4. On the Scope:

a)	Set Trigger Source	[Trig > A	Event (Main)	trigger setup >	> Ch2]: CH2
----	--------------------	-----------	--------------	-----------------	-------------

File	Edit Ve	ficel Digital	HeriziAcq	Tég Displa	Cursors	Measure	Mask Math	MyScope	Analyza	Utilities Help		Tek	_ N
and and and a state of the stat													
L					1.1.1	I.		£			<u> </u>		
	CL 50.0	nVidiv	500 50	23.6G						/ a.av	2.8mm	W/ 50.005%	23.0ps/pt
									E.				
ľ										1 1 1	Run 631 m	Sample	RL-1.0k
											Run 631 ai Auto	Sample cqs January 15, 201	RL:1.0k 7 10:02:13
										,	Run 631 au Auto	Sample oqs January 15, 281	RL-1.6k 7 10:02:13
-		Trigger	- Edge								Run 631 ai Auto	Sample cqs January 15, 201 Edge → Acquire	RL:1.0k 7 10:02:13
	AEren	Trigger	- Edge								Run 631 ac Auto	Sample con January 15, 201 Edge Acquire	RL:1.5k 7 10:02:13
1	AEree	Trigger Trigger Edge	- Edge r Type	Sou	rce					Coupling	Run 631 au Auto	Sample con January 15, 281 Edge> Acquire	RL-1.6k 7 19.92:13
1	AEvent A>8 Sec	Trigger Trigge Edge	- Edge	Sou	rce 2 🕑		1/-			Coupling DC Y	Auto	Sample oon January 15, 201 Edge Acquire Force Tripper	RL-1.0k 7 10-02-13
1	A Event	Trigger Edge	- Edge r Type v U Trigger	Sou	rce 2 D		' /.			Coupling DC T Stope	Run 631 ac Auto	Sangle ces January 15, 201 Edge Acquire Force Tripper	RL-1.6k 7 19:92-13
1	A Event A>B Sec B Event Visual Trigger	Trigger Trigge Edga Mark A Events	- Edge r Type V U Trigger in Record	Sou	rce 2 F		Ţ*	Level		Coupling DC V Stope	Run 631 ac Auto	Sangle cea January 15, 201 Edga -> Acquire Force Tripper	RL-1.0k 7 19:92:13
2	A Event A>8 Sec B Event Visual Trigger Optores	Trigger Trigger Edge Mark A Events	- Edge r Type v M Triggar in Record	Sou Ch.	rce 2 •		*	Level		Coupling DC V	Run 631 ec Auto	Sangle cos Jenuary 15, 201 Edge -> Acquire Force Tripper	RL-1.6k 7 10:92:13
a a a a a a a a a a a a a a a a a a a	AEvent A>B Sec B Event Visual Trigger Optices	Trigger Trigger Edge Mark A Events	- Edge r Type V Trigger in Record	Sou Chi Set	rce 2 F	-	*	Level adv		Coupling DC V Sispe	Run (31 at Auto	Sangle cqs January 15, 201 Edga → Acquire Force Trapper	RL16k 7 59.92.13
5 E	A Event A>8 Sec B Event Visual Trigger Options	Trigger Trigge Edga Mark A Events Events Shared	- Edge r Type U Trigger in Record	Sou Ca:	rce 2 F		*	Level Latv		Coupling DC V Sispe	Rus (31 at Auto	Sangia ces January 15, 241 Edge Acquire Force Trigger	RL-1.6k 7 19:92:13

FIGURE 31. SET TRIGGER SOURCE

- b) Set Math [*Math* > Select Ch1-Ch3]:
 - Math1 Position: **Odiv**
 - Scale: **100mV**

FIGURE 32. SET MATH

GRL-PAM4-RX User Guide/MOI © Granite River Labs 2017

le Edit Vertical Digital	Horiz/Acq Trig	Display Cursors	Measure	Mask Math	MyScope /	Anslyze U	tilles He	₽ 🔽		Tek		X
	Horizoglali/A Zooer Contr Jostoset Undo Last A East Acquisi RungStop Delay, Mode A Sampling M Horizontal M Position/Sci Resolution.	cquisition Setup. pls toset tors On uto on sdes ke	Real Tr Interpo	Ime Only Disted Real Time						Samp 10.0 Record 10	le Rate (ITS/s I Length 100	0
Ct 50.0mVidiv Ct 89.75mV	Acquisition1 Fast Frame 1 Zoom Setup Zoom Gratic	ilode Setup				4	<u>f</u> 0.0V		10.0ps/div 10 Run 9 256 acqs Man Janua	.0TS/s ET Sample ry 13, 2017	100.01 RL:1.0k 16:	ts/pt t t13:48
Horizon Horizonist Mode Acquisition Autom Constr Manual	tal • • • • • • • • • • • • •	Sample Rate 10.0T S/s Scale 10.0ps Record Length 1000	•	Resolution 100fs Duration 100ps	Digita Sample 1 10.015 Digita Resolut 10005	ni Rate Sis si si si si si si si si si si si si s	Educ Noted	Ref Pt Position 12.0%		Ho	rizontal foom	

c) Set Sampling Mode [Horiz/Acq tab > Sampling Modes > Equivalent Time]: Equivalent

FIGURE 33. SET SAMPLING MODE

- d) Set Variable Display Persistence [Display tab > Display Persistence > Persistence Controls]:
 - Select "Variable"
 - Persist Time: 100s

FIGURE 34. SET VARIABLE DISPLAY PERSISTENCE

- e) Set Horizontal Acquisition [Horiz/Acq tab > Horizontal Acquisition Setup]:
 - Sample Rate: **10T/s**
 - Mode: Manual
 - Record Length: 1000

FIGURE 35. SET HORIZONTAL ACQUISITION

- 5. Apply Cursors [*Cursors tab*]:
 - Check "Cursors On"
 - Cursor Type: V Bars

FIGURE 36. ENABLE CURSORS

6. Drag Cursor "a" to the center crossing on the DATA2 Eye Diagram.

FIGURE 37. ADJUST CURSOR

- 7. Turn ON DATA1 and turn OFF DATA2.
- 8. Using the Delay function on DATA2, adjust the delay until the DATA2 crossing matches the Marker location for the DATA1 crossing.

FIGURE 38. ADJUST DATA2 DELAY

9. Now **re-enable DATA1**. Both DATA Outputs should now be enabled.

10. Verify that the generated Eye is a PAM4 Eye Diagram.

FIGURE 39. VERIFY EYE DIAGRAM

10.1.3 Stress Calibration Before Attaching HCB/MCB Mated Pair

The following diagram shows an example of the stressed input calibration/test setup for the host under test. The stressed signal is applied at TP4a (output of BERT) and will additionally be calibrated at TP4 (after attaching the HCB/MCB mated pair).

Figure 120E-10-Example host stressed input test

FIGURE 40. HOST STRESSED INPUT CONNECTION SETUP

This section describes the calibration for the Pattern Generator Jitter characteristics at the output of the pattern generator (TP4a).

- 1. Using the same physical setup from Figure 27, calibrate the pattern generator (BERT) output at TP4a.
 - a) On the BERT, change the pattern to the PAM4 Clock Pattern JP03A.
 - i) Select PPG > Pattern > Test Pattern > Data.
 - ii) Select "Edit" to change DATA pattern.
 - iii) Select File > Open > Pattern Files > PAM Pattern.
 - iv) Under Directories, select "JP03A".
 - v) Under File List, select "JP03A.txt".

FIGURE 41. CHANGE PATTERN ON BERT

- b) On the Scope, set Jitter Measurements with Clock Pattern.
- i) Open DPOJET.
- ii) Select Analyze > Jitter and Eye Analysis(DPOJET) > Select:
- TJ@BER
- RJ-DD1
- DCD1

File	Edit Ver	ical Digital	HoriziAca Trig	Display C	ursors Measure	Mask Math	MyScope An	alyze Utilities	Help		Tek E	0 0
	 ME 127.0		5µя					A - 7 0.	DV	2.Sysidiv 10 Praview 0 acqa Man Januar	0GS/s IT 5.0ps/j Sampla RL:5.0M ry 15, 2017 112	Pt 23:48
E.	Jitter, N Select Configure Results Plots Reports	Person Person Freq Jates Tame Eye Ampi Siandard	Diagram Ana TJ@BER	PJ DJ-08 DCD	RJ RJ-06 Mw TIE	Jitter Summary SRJ	Clear Selec	ted	alar tersenit NER1 61	Preferences	Clear Recalk	A∆ ⊗

- iii) Select the "Configure" button followed by:
- Edges:
 - Make sure all Measurements use "Data" as the Signal Type.

	a l'ordina l'		والتشوي		a la state de la secola de la se	and the second second	the second s		And in case of the local division of the loc	and the second second	A STATES	1 20000					THE .	
													1	1	1			
				-			-										Bit Ra	ite (
																-	26.5630	3b/s
																		_
A DESCRIPTION OF THE OWNER.	and shadow have	the state is not	and the second second	and the second	the second laws	the second second		And in case of the local division of the loc			and the second second		-				No. of Concession, Name	
1177.0				-			_			(1)						100.00		E One la
127.0 m	IV 2	.5µs				أنيتي	-	-	- I I		f 0.	ov	-	2.5 Pro	us/div rview	100GS	l/s IT 5 Sample	5.0ps/p
127.0 n	IV 2	.5µs	ا							A	7 0.	ΰV	_	2.5 Pro 0 a	us/div rview cqs	100GS	ila IT 1 Sample RL	5.0ps/p
(una) 127.0m	NV 2	.5µs	l							Â.	7 0.	οv	- <u>1</u>	2.5 Pro 0 a Ma	usidiv rview cqs n Jan	100GS 1	Va IT S Sample RL 5, 2017	5.0ps/p .:5.0M .11:2
127.0n	IV 2	.5µs				n n i i					f 0.	οv		2.5 Pro 0 a Ma	µsi/div rview cqs n Jan	100GS	i/s IT 5 Sample RL 5, 2017	5.0ps/p .:5.0M -11:2
Jitter, No	IV 2	-5µs e Diagram	Analys	ais Tool	5					A	T 0.	οv		2.5 Pro 0 a Ma	ya/div rview cqs n Jan	10005 1 1uary 1	iá IT 5 Sample RL 5, 2017	5.0ps/p .:5.0M 11:2
Jitter, No	se and Eye	-5µs • Diagram	Analys	sis Tool	5						7 0.	ov.		2.5 Pre 0 a Ma	yaldiv Iview cqs n Jan	100GS 1 10ary 1	i/a IT 5 Sample RL 5, 2917 Ck	5.0ps/p ::5.0M 11:2 sar
Jitter, No	ise and Eye Taggeert RJ-801	.5µs e Diagram	Analys	ulas Tool Las(s) Math1	5		Signa	i Type		A	T (DV.		2.5 Pro 0 a Ma	ya/div sview cqs n Jan	100CS 1 100Ty 1	iva IT 1 Sample RL 5, 2917	5.0ps/p ::5.0M 11:2 sar
Jitter, No Select	se and Eye Tageert RJ-001	ь Diagram nemt	Analys	sis Tool us(s) Us(h1 Noth1	5	less lock oviety	Signa	(Type			T (DV		2.5 Pro 0 a Ma	ya/div rview cqs n Jan	100CS 100TS	Jample RL 5, 2017	5.0ps/p .:5.0M 11:2 sar calc
Jitter, No Select	IV 2 Ise and Eye Moreore Tageter RJ-601	e Diagram	Analys	els Tool ca(s) Hath1 Hath1		la de	Signa	a Type			T 	DV		2.5 Pro 0 a Ma	pa/div rview cqs n Jan	100GS 1 100FS	ila IT S Sample RL 5, 2017	5.0µs/p ::5.0M 11:2 sar calc
Jitter, No Select Configure Results	w 2 ise and Eye Mostaria TageEtt RJ-001	e Diagram	Analys	iis Tool taisi Mathi Mathi		kon k kon k kon k kon k kun kun kun kun kun kun kun kun kun kun	Signa Ck Da	a Type			7 0.			2.5 Pro 0 a Ma	us/div rview cqs n Jan	100GS	ila IT S Sample RL 5, 2017	5.0ps/p ::5.0M 11:2 sar calc
Jitter, No Select Configure Results	w 2 ise and Eye Mostaria TageEtt RJ-001	: Diagram	Analys	sis Tool ca(s) Math1 Math1	S C R R F	koch oversy tjDj ters	Signa Ck	i Type			7 0.			2.5 Pre 0 a Ma	usidiv sview cqs: n Jan	100GS tuary 1	Ala IT S Sample RL 5, 2017	5.0ps/p 5.0ps/p 5.0ps/p 11:2 sar calc
Jitter, No Select Configure Results Plots	IV 2 Ise and Eye Moreorers TageEst TageEst TageT	: Бµх	Analys	els Tool tais) Hathi Hathi	S C R R F R G R	loca loca loca loca loca loca loca loca	Signa Ck	a Type						2.5 Pre 0 a Ma	ysidiv rview cqsi n Jan	100GS	i/a IT 5 Sample RL 5, 2017 CX Rec Sin	5.0ps/p .:5.0M 11:2 sar caic gle

FIGURE 43. SELECT DATA SIGNAL TYPE ON SCOPE

- RjDj:
 - $\circ~$ Set Target BER to "1E-06".
 - Click "Apply to All".

FIGURE 44. SET TARGET BER ON SCOPE

- Clock Recovery:
 - Set Method to "Constant Clock Mean".
 File Edt Vertical Digital Horiz/Acq Trig Display Cursors Measure Mask Math MyScope Analyze Utilities I

Image: Select						Bit Rate 3 26.563Gb/s
Image: Select Method Apply to All* Recalc Method Apply to All* RH-B01 Method Apply to All* RH-B01 Method Apply to All* RH-B01 Method Apply to All* Recalc Method Apply to All*						
Select Measurement Source(s) Taggerat identit Edges Configure R2-861 identit Other Mathetic Clock Resovery Auto Calc Auto Calc	127.0mV	2.5µs		A C10 / 0.0V	2.5µs/div 1	00GS/s IT 5.0ps/pt
	Jitter, Noise and E	Eye Diagram Analysis ⊺	Fools		Preview 0 acqs Man Janu	Sample RL:5.0M ary 15, 2017 11:27:42 Clear X
Results Filters First Acg Plots General Every Acg Global Advanced	Jitter, Noise and E Select Configure Parts Parts	Eye Diagram Analysis 1 arement Source(s) ER1 I Math 1 I Math	Tools Edges Clock Recovery	 Method Constant Clock – Mean Auto Calc	Apply to All*	Sample RL:5.0M ary 15, 2017 11:27:42

FIGURE 45. SET CLOCK RECOVERY METHOD ON SCOPE

iv) Select the "Plots" button and select the "Eye Diagram" plot.

FIGURE 46. SELECT EYE DIAGRAM PLOT ON SCOPE

- v) Configure Acquisition (*Horiz/Acq > Horizontal Acquisition Setup*).
- Set Mode to "Manual".
- Set Bandwidth to "33GHz".
- Set Sample Rate to "200GS/s".
- Set Record Length to "5M".
- c) Enable and calibrate RJ.
- i) On the BERT, go to the jitter Setting page and set the initial RJ to "0.096 UIp-p".

FIGURE 47. SET INITIAL RJ ON BERT

- ii) On the Scope, measure RJ to the target value of 0.15UIp-p at BER 1E-06.
- iii) On the BERT, adjust RJ until the target value is met.
- d) Enable and calibrate TJ.
- i) On the BERT, go to the jitter Setting page and enable BUJ with the following settings:
- PRBS: "PRBS7"
- Amplitude: "0.100UIp-p"
- Bitrate: "2.65Gbps"
- LPF: "200MHz"

FIGURE 48. SET UP BUJ ON BERT

- ii) On the Scope, measure TJ to the target value of 0.28UIp-p at BER 1E-06.
- iii) On the BERT, adjust BUJ until the target TJ value is met.
- e) Enable and calibrate SJ.
- i) On the BERT, go to the jitter Setting page. Enable SJ and disable RJ and BUJ.
- ii) For each case in the table below:
- Set the SJ frequency and amplitude to the values defined.
- Measure the SJ amplitude on the Scope to the target value.
- Adjust the SJ amplitude on the BERT until the target SJ value is met.

Parameter	Case A	Case B	Case C	Case D	Case E	Units
Jitter frequency	0.04	1.333	4	12	40	MHz
Jitter amplitude	5	0.15	0.05	0.05	0.05	UI

FIGURE 49. SET UP SJ ON BERT

10.1.4 VEC, Eye Height and Eye Width Calibration After Attaching HCB/MCB Mated Pair

The Eye Height and Eye Width will be measured to a probability of 10E-6 at TP4. This is performed by adjusting the RJ and Output Amplitude of the pattern generator (while making sure not to exceed 900mVpp at the output of the pattern generator) to meet the target Eye Height and Eye Width. This can be done by setting the CTLE of the Reference Receiver to obtain the optimal CTLE which generates the largest Eye Height and Eye Width. Using this optimal CTLE, proper adjustments will then be carried out to achieve the final Eye Height, Eye Width, and VEC.

Figure 120E–10—Example host stressed input test

FIGURE 50. VEC, EYE HEIGHT AND EYE WIDTH CONNECTION SETUP

1. Set up the equipment as shown in the following diagram. Both the Host Compliance Board (HCB) and Module Compliance Board (MCB) are included in the setup to perform final Eye Width, Eye Height, and VEC measurements. (*Note: The current 100G test fixture has four differential TX ports and four differential RX ports. All paths should be the same, but TX1 is used as the default path in this setup.*)

FIGURE 51. PHYSICAL SETUP WITH HCB/MCB ATTACHED

- 2. Connect the PAM4 Combiner directly to the PG1 and PG2 Differential Outputs of the BERT.
- 3. Connect the DATA+ and DATA- Outputs of the Combiner to 8dB attenuators to TX1+ and TX1- of the HCB side of the mated 100G HCB-MCB respectively. (*Note: Use the 8dB attenuators to enable the BERT Data signals to achieve eye height target of < 60mV.*)
- 4. Connect the TX1+ and TX1- Outputs of the MCB side of the mated 100G HCB-MCB to CH1 and CH3 or CH2 and CH4 of the Scope respectively.
- 5. Set up the Scope as follows:

a) Set Math to "Ch1-Ch3" [Math > Math Setup]. (Note: Ch1 and Ch3 should be scaled appropriately.)

Pulse-Amplitude Modulation 4 (PAM4)

Edit Vertica	I Digital Ho	nizlAcq Trig	Display Cursors	Measure N	Aask Math I	WyScope Ar	nalyze U	ilities t	telp				Tek 📒	-
														in sol
and the sheet	and some start start	and and a state	and the second second		anderiescen	-	adaraaa	owenes				-	Position	. 6
													0.0div	
													Scale	C
												-	100mV	
												-		
	An owner owner war and the second				and the supervised		and the second			ALC: NO.			No. of Concession, Name	
(dissidation diss	COLORIDA COLORIDA	the a particular selection	disconstruction and the	delice and and the	ria di fina di fina	ingeneration of the second	no de la compañía de	COLUMNS OF	- animperio	NORMON	na na na na na	address to the second	NER YOU NO	10000
			-	-		-		-	-					
ct 70.0mV	l la chuir dhata Idiv 50	ю _{¶w} :33.0G						/ 0.0V	-		10.0µs/di	v 100GS	/s IT 5.0	Ops/p
70.0mV/	Vdiv 50 Vdiv 50 Vdiv 50	ים ק _ע -33.0G ים ק _{ע-} 33.0G					A' CL	∫0.0V	1		10.0µs/di Run	v 100GS Sar	/s IT 5.0 nple	Ops/p
ct 70.0mV/ 70.0mV/ 100.0m	7div 50 7div 50 V 10.9	μΩ ^q w-33.0G μΩ ^q w-33.0G μs				مند بند مسري)	A' CL	∕0.0V	-		10.0µs/di Run 44 acqs Man Ja	v 100GS Sar	/s IT 5.0 nple RL:2	0ps/pl 20.0M 12:51
Ct 70.0mV 70.0mV 100.0m	7div 50 7div 50 V 10.0	HΩ ^B W-33.0G HΩ ^B W-33.0G H9				, (A' CL	√0.0 V	1994		10.0µsldi Run 44 acqs Man Ja	v 100GS Sar	/s IT 5.0 nple RL:2 I, 2017	0ps/p 20.0M 12:5
61 70.0mV/ 70.0mV/ 70.0mV	/div So /div So V 10.0 Math Setu	ю ⁸ w-33.0G IΩ ⁸ w-33.0G µs p - Math 1				, (A' CL	∫ 0.0V	-		10.0µsldi Run 44.acqs Man Ja	v 100GS Sar	/s IT 5.0 nple RL:3 I, 2017	0ps/pl 20.0M 12:54
70.0mV 70.0mV 100.0m	Valiv 50 Valiv 50 V 10.0 Math Setu Math 1 =	Ω ⁴ w33.0G μα ⁴ w33.0G μs p - Math 1 [Ch1-Ch3				, (A' CL	/ 0.0V			10.0µsidi Run 44.acqs Man Ja	v 100GS Sar	/s IT 5.0 nple RL:1	0ps/p 20.0M 12:5
Addination and an TO.0mV TO.0mV TO.0mV TO.0mV Mathematical Mathematical	/div 54 /div 50 v 10.0 Math Setu Math 1 =	Ω ⁶ _W -33.0G Ω ⁶ _W -33.0G μs p - Math 1 <u>Ch1-Ch3</u>				(f 0.0V			10.0µsJdi Run 44 acqs Man Ja	v 100GS. Sar	/s IT 5.0 nple RL:2 I, 2017	0ps/pl 20.0M 12:54
Math2	/div 50 /div 50 v 10.0 Math Setu Math 1 = Display	Ω ⁴ w33.0G Ω ⁴ w33.0G μs p - Math 1 <u>Ch1-Ch3</u>	Vertical Control		Ch1-Ch2	Ch3-Ch	A 600	Edito Cus	tom An	Clear)	10.0µs/di Run 44 acqs Man Ja Appl unctions	v 100GS Sar onuary 24	s IT 5.0 nple RL: 2017 Spects Analys	20.0M 12:54
Math3	/div 50 /div 50 v 10.0 Math Setu Math 1 = Display	Ω = _W 33.0G Ω = _W 33.0G p - Math 1 Ch1-Ch3 Math 1 0.0	Vertical Control	Label	Ch1-Ch2	ch3-Ch	4)	Edito Custor	tom Ant	Clear AB Fu	Annulina 1 10.0ps/di Run 44 acqs Man Ja Man Ja Appl Appl antions	v 100GS Sar onuary 24	Alle Marian Is IT 5.0 nple RL:: , 2017 Spects Analys Basis	all Dps/pi 20.0M 12:50 12:50
CT 70.0mV 70.0mV T 100.0mV Math1 Math2 Math2 Math2	Math Setu Math Setu Math Setu Math 1 = Display	р - Math 1 (chi-chi матh 1 (chi-chi маth 1 маth 1 0.0 5c	Vertical Control	Labol	Ch1-Ch2 Ch1-Ch3	ch3-ch Ch2-Ct	44 14	Edito Custor	tom And n MATL	Clear Ilysis Fu	Andia 1 10.0ps/di Run 44 acqs Man Ja Andr Anaphi Matta Anaphi Anaphi	v 100GS Sar onuary 24	s IT 5.0 nple RL: 2017 Spects Analys Basis	20.0M 12:50 12:50
Math2 Math4	Math Setu Math Setu Math Setu Math 1 = Display	р - Math 1 (0.1	Vertical Control Position I div a ale 1 mV b	Label Units	Ch1-Ch2 Ch1-Ch2 Ch1-Ch3	Ch3-Ch Ch2-Ch	A' CT	Edito Custor	tom Ant	ilear Ilysis F AB Fu	Appl Ann 44 acqs Man Ja Appl unctions nctions MATLA Analysi fx	v 100GS Samuary 24	s IT 5.0 nple RL: 2017 Specis Analyt Basis	appelpi 20.0M 12:50 sis
Mistha Mistha Mistha Mistha	Math Setu Math Setu Math Setu Math 1 = Display	P - Math 1 C 1-Ch3 (Ch1-Ch3 Math 1 Ch1-Ch3 Math 1 0.0 Sc 100 	Vertical Control Position I div a als 1 MV b Logic	Labol Units V properties	Ch1-Ch2 Ch1-Ch3 Ch1-Ch3 Ch1-Ch3	Ch3-Ch Ch2-Ch Ch3-Ch	4 14 14	Custor	tom And	Clear)	And	v 100GS Sar sinuary 24	A IT 5.0 npla RL: 2017 Spects Analys Basis	raj ced

FIGURE 52. SET MATH

b) Set Bandwidth to "33GHz" [Vertical > Vertical Setup]. This applies to All channels.

FIGURE 53. SET BANDWIDTH

- c) Set Sample Rate [Horiz/Acq > Horizontal/Acquisition Setup] as follows:
- Mode: "Manual"
- Sample Rate: "200GS/s"
- Record Length: "20M"

File Edit	Vertica	Digital	HoriziAcq	Trig	Display	Cursors	Measure	Mask	Math	MyScope	Analyze	Utilities	s Help					Tek		X
															No.		-			
	on para	ni dalah se	NORMANNA		(Theorem in			nish evin			NAME OF T	in second	(a) and a	denne			in an			sana sana
e																				*
TOURING	eren palak	dealer a c	ndhata-parterit	ertinen	antiniterior	Norden	no posicione	(non-line	nin un an	HANNINA CO	(Terrent da	ndiane:	angkina	toblas	en parti	unua.	antiper	leine un anna	Nirvet Walls	Leisen ten
-		A second second						and the second second	morene	-		-						and an owner		-
	70.0mV	/div	50Ω ¶w:	33.0G		- desidered		-				70	.0V		10	10.0µs/	div 101	0GS/s 11	5.0p	s/pt
-	70.0mV	div	500 ^N W:	33.0G												Run		Sample		
	100.0m	V	10.0µs													282 acc Man	ts Januar	y 24, 201	RL:20	OM 3:03:08
		Horizor	ntal							Die	ital .									
Horse	ontal	Mod	ie		Sam	ple Rate	1	Resoluti	on	Samp	e Rate			Dek	Mode					
Acqui	sition	Autor	natic		20	033/5	-	3.005	_	2000	J 3/8			-	Can			H	Zoom	
		Cons	tant Sample	Rate	-	icale		Duratio	n	Dig	ital iution								8	
		Com	turn oumpro		10).0µs		100µs		5.0	ps	Batter	re Bernod	Re	PL	Alt	of Barrison of	-11	-	
		• Manu	al									1			2	2			Ext Ref	
					Reco	rd Length						-		Positie	MR.			- 10		
					200	00000							E	50.05	5					
					-	-														

FIGURE 54. SET SAMPLE RATE

- 6. Open and set up the Tektronix PAM4 Analysis Tool as follows:
 - a) Select Analyze > PAM4 Analysis.
 - b) Select the "Config" button and configure the following:
 - i) Under Main Setup:
 - Symbol Rate: "26.5625GBd"
 - Waveform Source: "Math 1"
 - ii) Under *Clock Recovery*:

Clock Recovery is set for First-Order, 20dB/decade roll-off with JTF BW at 10MHz.

- PLL Model: "Type 1"
- JTF BW (MHz): "10MHz"
- iii) Under *CTLE*:
 - Enable CTLE (select the CTLE check box)
 - CTLE Presets: "OIF-CEI GEN I"

- iv) Select *Bessel-Thomson (BT) Filter*:
 - Enable BT Filter.
 - Set to Manual Bandwidth Mode.
 - Set BW: "33GHz"
- c) Select the "Prefs" button and configure *Population Control*:
 - Limit Method: "Number of Symbols"
 - Number of Symbols: "4000000"
- 7. Determine the CTLE which maximizes product of Eye Height and Eye Width as follows:
 - a) Set CTLE to 1dB.
 - b) Select the "Run" function on the Tektronix PAM4 Analysis Tool.

(Note: Make sure to select the "Run" mode and not "Single", in order for the application to run continuously for several minutes to capture the required number of waveforms for 10E-06 analysis.)

- c) Select the "Full Wfm" button and capture the following:
- i) Eye Height EH6
- ii) Eye Width EW6
- iii) VEC

FIGURE 55. CAPTURE EYE MEASUREMENTS

d) Populate the EH6, EW6, and VEC measured values in the following table. Calculate the Area. (*Note: Typically 3 or 4 CTLE's will need to be measured to find the CTLE with the largest area.*)

	Target: 5.3 to 6.3dB	Target: 0.20UI or 14.96ps	Target: 40mV	
CTLE	VEC (dB)	EYE WIDTH (UI)	EYE HEIGHT (mV)	AREA (EH6 x EW6)
1				0
2	6.262	0.21	29.48	6.1908
3				0
4				0
5				0
6				0
7				0
8				0
9				0

e) Repeat steps a to d with additional CTLE's (2 to 9dB) and enter the EH6, EW6, and VEC values in the table.

f) Determine the optimal CTLE that generates the largest area. This CTLE will be used for final measurement.

8. Perform final adjustments for the RJ and pattern generator Output Amplitude (without exceeding 900mVpp) with the largest area CTLE. These should be adjusted to reach the target EH6, EW6, and VEC values in the specifications using the reference receiver with the setup of the optimal CTLE that was determined in the previous step.

Figure 56. Final Adjustments for RJ and PG Output Amplitude

Note: Ensure to maintain the 2:1 ratio between the DATA1 and DATA2 output amplitudes of the pattern generator for proper PAM4 signaling.

- a) On the PAM4 Analysis Tool, set *CTLE Presets* to "OIF-CEI Type I" (Optimal CTLE).
- b) On the BERT Jitter Modulation Source page, configure the following:
- i) Turn on Sinusoidal Jitter (SJ) at 100 MHz.
- ii) Set the SJ frequency to 0.04MHz as defined in the following table.

Parameter	Case A	Case B	Case C	Case D	Case E	Units
Jitter frequency	0.04	1.333	4	12	40	MHz
Jitter amplitude	5	0.15	0.05	0.05	0.05	UI

iii) Set the SJ amplitude to the previously calibrated value.

FIGURE 57. SET UP SJ ON BERT

iv) Adjust RJ by increasing or decreasing the RJ until the target values of Eye Height, Eye Width, and VEC are met.

File View He	elp	Tree View		🚟 💀 🗗 🏹	X 5 2 4)	• • 🗷
[1:6:1] Jitter Mod	dulation Source					
[1.6.1] Jitter Mod Setting Sy 6 6	dulation Source	SJ1 ON 100.000 MHZ 0.050 UI ■550 OFF 33000 HZ 0 ppm ■512 OFF 10 HZ 0.000 UI	S N ON 0.096 U(p-p) PM BUU ON 0.100 U(p-p) Ext Jitter Input Disable		Pattern Generator Half-rate (MUX) 13.281250 Gbit/s 13.281250 Gbit/s (MI B) (MI B	
Screen Copy Sa	aved. C:\Anritsu\MP1800A\Scree	n Copy\SC170126033950.bmp				

FIGURE 58. ADJUST RJ ON BERT

c) On the BERT PPG page, adjust the DATA1/DATA2 Amplitude.

Note: Ensure to maintain the 2:1 ratio between the DATA1 and DATA2 output amplitudes of the pattern generator for proper PAM4 signaling.

1] 28G/32G PPG Data1 💌	[1:3:1] 286/320 PPG Data2 💌
utput Pattern Error Addition Pre-Code Misc1 Misc2 Output Bit Rate Setting Variable Clock ON C	Output Pattern Error Addition Pre-Code Misc1 Misc2 Output Output Bit Rate Setting Variable Clock ON V 26.562500 Clock Setting
Data/XData ON Offset Vth Tracking ON Level Guard OFF Setup Defined Interface Variable Variable Variable Variable Vormble Variable Vormble Vormbl	Data/XData ON V Offset Vth V Tracking ON Level Guard OFF Setup Defined Interface Variable V Amplitude 0.750 Vpp 0.750 Vpp Offset AC OFF 0.000 V 0.000 V External ATT Factor 0 dB 0 dB Amplitude 0.750 Vpp 0.750 Vpp Offset 0.000 V 0.000 V Cross Point 50.0 % 50.0 % Half Period Jitter 0 dB Delay © 60 dm mUI C 224 ps © Calibration Relative 0 mmUI

FIGURE 59. ADJUST DATA OUTPUT AMPLITUDE ON BERT

- d) Measure EH6, EW6, and VEC and verify that their target values are met, as follows:
- i) On the PAM4 Analysis Tool, select the "Run" function.

FIGURE 60. MEASURE EH6, EW6, AND VEC

ii) If the target values are met, the measurement is completed successfully. Otherwise repeat step b (iv) onwards to adjust the RJ and output amplitude.

10.1.5 Equipment Setup for DUT Testing

The following figure shows the typical connection setup for testing the Host DUT.

FIGURE 61. PHYSICAL TEST SETUP FOR HOST DUT

- 1. Connect the PAM4 Combiner directly to the PG1 and PG2 Differential Outputs of the BERT.
- 2. Connect the DATA+ and DATA- Outputs of the Combiner to 8dB attenuators to TX1+ and TX1- of the HCB respectively.
- 3. Connect the HCB to the Host DUT.

END_OF_DOCUMENT